Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity.
نویسندگان
چکیده
Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLAGELLIN-SENSING 2 (FLS2) senses bacterial flagellin and initiates immune signaling through association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases, PUB12 and PUB13, to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12 and PUB13 and is required for FLS2-PUB12/13 association. PUB12 and PUB13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.
منابع مشابه
Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the...
متن کاملThe Arabidopsis malectin-like leucine-rich repeat receptor-like kinase IOS1 associates with the pattern recognition receptors FLS2 and EFR and is critical for priming of pattern-triggered immunity.
Plasma membrane-localized pattern recognition receptors such as FLAGELLIN SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize microbe-associated molecular patterns (MAMPs) to activate the first layer of plant immunity termed pattern-triggered immunity (PTI). A reverse genetics approach with genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY...
متن کاملLigand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis.
Pattern-recognition receptors (PRRs) trigger innate immune responses in animals and plants. One such PRR is the flagellin receptor FLS2 in Arabidopsis. Here, we demonstrate that a functional fusion of FLS2 to the green fluorescent protein (GFP) resides in cell membranes of most tissues. Stimulation with the flagellin epitope flg22 induces its transfer into intracellular mobile vesicles, followe...
متن کاملDirect transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1.
In plant innate immunity, the leucine-rich repeat receptor kinase FLS2 recognizes the bacterial pathogen-associated molecular pattern (PAMP) flagellin. The molecular mechanisms underlying PAMP perception are not fully understood. Here, we reveal that the gaseous phytohormone ethylene is an integral part of PAMP-triggered immunity. Plants mutated in the key ethylene-signaling protein EIN2 are im...
متن کاملInduced Endocytosis of the Receptor Kinase FLS2.
Receptor-like kinases (RLKs) that function as pattern-recognition receptors (PRRs) play a key role in plant immune responses. The receptor recognizing flagellin in Arabidopsis, FLS2, is encoded by a membrane resident RLK. FLS2 is involved in preinvasive immunity against bacterial infection. Recent observations revealed that upon flagellin perception FLS2 accumulates in intracellular mobile vesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 332 6036 شماره
صفحات -
تاریخ انتشار 2011